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Isolated inertialess drops cannot break up
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We consider an axisymmetric, freely suspended fluid drop with surface tension, whose
viscosity is so large that both inertia and forcing by an external fluid can be ignored.
We show that whatever the initial condition, pinchoff can never occur.

The breakup of fluid drops has been studied very extensively (Stone 1994; Eggers
1997) owing to its relevance to mixing (Cristini & Tan 2004), printing (Basaran 2002)
and DNA analysis (Basaran 2002; Schena et al. 1998). In most circumstances, breakup
of an extended piece of fluid occurs almost inevitably owing to the Rayleigh instability
(Eggers 1997), which tends to locally reduce the radius until it reaches zero. So one
might think that a sufficiently extended drop, that has separated from a nozzle or
has been stretched by an external fluid of comparatively low viscosity, will break up
in the same manner. Experiments and numerical simulations however indicate that
this is not the case, as long as inertia can be neglected. Stone (1994), p. 81, observes
that experiments and numerical simulations (Stone & Leal 1989) suggest that the
maximum drop length needed to ensure breakup increases roughly linearly with the
viscosity ratio between the drop and the surrounding fluid. Here we treat the limit
that the outer fluid can be neglected altogether, in which case we can show that the
drop never breaks up, but rather retracts to its spherical state of minimum surface
energy, see figure 1. Qualitatively, this means that the ends of the drop retract before
the drop can break in the middle. Inertia or an external fluid inhibit retraction, so
pinching may occurs if either effect is taken into account and the drop is sufficiently
extended.

Neglecting inertia, the interior of the drop is described by Stokes’ equation, subject
to a normal stress γ κn, where γ is the coefficient of surface tension and κ = 1/h(1 +
h2

z)
1/2 − hzz/(1 + h2

z)
3/2 is twice the mean curvature of the interface. If σ is the stress

tensor, this can be summarized concisely by

∇ · σ = 0 in the drop, σ · n = −γ nκ on the surface. (1)

Integrating ∇ · σ over a volume V bounded by the drop surface and a plane
perpendicular to the axis (cf. figure 1), we find from the divergence theorem and
from the boundary condition that

0 =

∫
S

n · σ ds =

∫
Cr(z)

n · σ ds +

∫
O

n · σ ds =

∫
Cr(z)

ez · σ ds − γ

∫
O

nκ ds, (2)

where O is the surface as shown in figure 1, and Cr(z) is the cross-section of the drop
at z.
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Figure 1. A viscous drop of unperturbed radius R is initially extended to a length of
15.5R. The solid lines show it retracting back into a sphere following Stokes’ equation, at
t = n × 0.646ηR/γ, n= 0, 1, 2, 3. The dashed lines are profiles computed on the basis of the
long-wave equation (7), shown at the same times. Note that the minimum local drop radius is
always a monotonically increasing function.

Using n = (−hzez + er )/(1 + h2
z)

1/2, the integral over O can be evaluated as

−2πγ ez

∫ z

zend

hhzκ dz = −2πγ ez

∫ z

zend

[
h
/(

1 + h2
z

)1/2]
z
dz = −2πγ ezh

/(
1 + h2

z

)1/2
, (3)

since the height h(z, t) goes to zero at the end of the drop. Thus we arrive at the
exact relation ∫ h(z,t)

0

ez · σ r dr = −γ ezh
/(

1 + h2
z

)1/2
(4)

for the total force on the cross-section of the drop.
To evaluate the z-component of (4), we note that ez · σ · ez = −p + 2η∂vz/∂z =

−p − (2η/r)∂(rvr )/∂r , where p(r, z) is the pressure, η the viscosity of the liquid, and
vz(r, z), vr (r, z) are the axial and radial components of the velocity, respectively. Thus
the z-component of (4) can be rewritten as∫ h(z)

0

p(r, z)r dr + 2ηh(z)vr (h(z), z) = γ h
/(

1 + h2
z

)1/2
. (5)

We are not able to evaluate the integral over the pressure exactly, so to make further
progress we consider the expansion of the pressure in r . Following Eggers (1997,
p. 887), this gives

p(r, z) = γ κ + 2ηvr (h, z)/h + O
(
r2, rhz, h

2
z

)
. (6)

Neglecting the higher-order terms in (6), (5) finally becomes

vr (h(z), z) = (γ /6η)
(
1
/(

1 + h2
z

)1/2
+ hhzz

/(
1 + h2

z

)3/2)
. (7)

At a local minimum of h, hzz is positive, making vr positive, so hmin is increasing in
time and breakup is impossible.

We have been careful to invoke (7) only at the point hmin, where hz is zero. If
breakup were to occur, hmin would have to go to zero, and higher-order radial terms
in (6) can be neglected. In fact, expansions in the slenderness like (6) have been used
successfully to describe the pinch-off of liquid drops for Navier–Stokes (Eggers 1993)
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and Stokes (Papageorgiou 1995) dynamics. Local analysis shows that hmin goes to
zero much faster than a typical axial scale, so higher-order radial terms go to zero
as the singularity is approached. In the present case, of course, a singularity never
occurs. This does not contradict previous work on breakup, since all existing analyses
of breakup are local in character, and thus assume from the outset that hmin goes to
zero somewhere.

As indicated above, (7) is equivalent to the one-dimensional long-wave-type
description of liquid filaments, which was found to often work surprisingly well
throughout a fluid drop or filament (Eggers 1997; Basaran 2002). Here, we find
this observation confirmed, as illustrated in figure 1 by superimposing the long-
wave calculation (dashed lines) onto the full numerical calculation. No adjustable
parameter was introduced in the comparison. It follows from (7) and is illustrated
by figure 1, that the minimum radius as given by the long-wave approximation must
be monotonically increasing. We suspect that the same holds true for the full Stokes
equations, but at present we cannot exclude a decreasing hmin in cases where hmin is
not small. We reiterate that although (7) works very well in practice in describing
entire drops, we are only required to make use of it locally to show the absence of
breakup. Our argument also does not make use of axisymmetry in any essential way,
but an analysis of this more general situation is outside the scope of this short note.

It would be interesting to extend our results to the case that an exterior fluid
of small but finite viscosity is present. Lister & Stone (1998) point out that the
local pinch-off behaviour is modified if shear stresses in the exterior fluid become
comparable to those in the interior of the bubble. If the exterior viscosity is small,
this only happens if hmin is correspondingly small. Since we have demonstrated in
this note that an isolated bubble never comes close to pinch-off, the modifications
in the pinching behaviour introduced by an external fluid (Cohen et al. 1999; Sierou
& Lister 2003) never become relevant. What has not been explored is the effect of
the outer fluid on the retraction dynamics, which may become relevant if the drop
is highly extended. A possible way to approach this problem is through a scaling
analysis similar to that of Powers et al. (1998), who investigated the opposite limit of
small drop viscosity.

We gratefully acknowledge funding by the EPSRC, and thank Howard Stone for
helpful comments on the manuscript.
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